0 M ay 2 00 7 Ternary Expansions of Powers of 2 Jeffrey
نویسنده
چکیده
P. Erdős asked how frequently 2 has a ternary expansion that omits the digit 2. He conjectured this holds only for finitely many values of n. We generalize this question to consider iterates of two discrete dynamical systems. The first considers ternary expansions of real sequences xn(λ) = ⌊λ2 ⌋, where λ > 0 is a real number, and the second considers 3-adic expansions of sequences yn(λ) = λ2 , where λ is a 3-adic integer. We show in both cases that the set of initial values having infinitely many iterates that omit the digit 2 is small in a suitable sense. For each nonzero initial value we obtain an asymptotic upper bound as k → ∞ on the the number of the first k iterates that omit the digit 2.
منابع مشابه
Ju l 2 00 8 Ternary Expansions of Powers of 2 Jeffrey
P. Erdős asked how frequently does 2n have a ternary expansion that omits the digit 2. He conjectured that this holds only for finitely many values of n. We generalize this question to consider iterates of two discrete dynamical systems. The first considers truncated ternary expansions of real sequences xn(λ) = ⌊λ2n⌋, where λ > 0 is a real number, along with its untruncated version, while the s...
متن کاملec 2 00 5 The Ternary Expansions of Powers of 2
P. Erdős asked how frequently the ternary expansion of 2 omits the digit 2. He conjectured this holds only for finitely many values of n. We generalize this question to iterates of two discrete dynamical systems. We consider real sequences xn(λ) = ⌊λ2 ⌋, where λ > 0 is a real number, and 3-adic integer sequences yn(λ) = λ2 , where λ is a 3-adic integer. We show that the set of initial values ha...
متن کاملExpansions of Powers of 2 Jeffrey
P. Erdős asked how frequently 2 has a ternary expansion that omits the digit 2. He conjectured this holds only for finitely many values of n. We generalize this question to consider iterates of two discrete dynamical systems. The first considers ternary expansions of real sequences xn(λ) = ⌊λ2 ⌋, where λ > 0 is a real number, and the second considers 3-adic expansions of sequences yn(λ) = λ2 , ...
متن کاملar X iv : 0 80 5 . 41 66 v 1 [ m at h . FA ] 2 7 M ay 2 00 8 PHASE SPACE DISTRIBUTION OF GABOR EXPANSIONS
We present an example of a complete and minimal Gabor system consisting of time-frequency shifts of a Gaussian, localized at the coordinate axes in the time-frequency plane (phase space). Asymptotically, the number of time-frequency shifts contained in a disk centered at the origin is only 2/π times the number of points from the von Neumann lattice found in the same disk. Requiring a certain re...
متن کاملar X iv : m at h / 04 11 14 0 v 2 [ m at h . N T ] 4 M ay 2 00 5 THE 3 x + 1 SEMIGROUP
The 3x + 1 semigroup is the multiplicative semigroup S of positive rational numbers generated by { 2k+1 3k+2 : k ≥ 0} together with {2}. This semigroup encodes backwards iteration under the 3x + 1 map, and the 3x + 1 conjecture implies that it contains every positive integer. This semigroup is proved to be the set of positive rationals a b in lowest terms with b 6≡ 0( mod 3), and so contains al...
متن کامل